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Abstract 

Neither local modes nor extended phonons precisely describe the 

excitations of anharmonic solids. A simple model Hamiltonian present

ed here characterizes the transition from local oscillator to optical 

phonon which would take p 1 ace if one could cont i no us ly increase the 

phonon dispersion. The model is used to describe two types of 

transitions: a phonon localization transition which is the analogue 

of the Mott transition for electrons, and a spectral transition asso

ciated with the appearance of two-phonon bound states. In real mate-

rials, a sharp phonon localization transition is probably not achiev

able, but striking spectral effects may be observable for some systems 

which are marginally able to produce two-phonon bound states. 



I. Introduction 

The harmonic approximation is usually taken as a fundamental 

tenant of so 1 i d state physics. Noni nteract i ng phonons are a conse

quence of the harmonic approximation, and small deviations from harmo

nicity can be treated perturbatively in terms of phonon-phonon inter

actions. 

The limitations of the harmonic approximation are much more 

apparent in molecular physics than they are in solid state physics. 

Small variations in the spacing between molecular vibrational energy 

levels result from anharmonicity, and although the deviations from 

harmonicity may be small, they have important consequences. For 

example, molecular vibration spectra change with the vibrational 

excitation of the molecules, and absorption peaks can exhibit saturat

ion and power broadening. 1 ' 2 These phenomena are not commonly encoun

tered in solids where the absorption peaks correspond to small-wave

vector-phonon energies even when a large number of phonons have been 

excited. 

The apparent success of the harmonic approximation in solids 

results from phonon dispersion. If one views a solid as a collection 

of molecular units, dispersion of the optical phonons results from 

intermolecular coupling. When this coupling dominates the anharmoni

city, deviations from harmonicity become difficult to observe. 

The goal of this paper is to describe the hypothetical transition 

from a co 11 ect ion of ·anharmonic osci 11 a tors to a set of interacting 

phonons which would occur if one could continuously increase the 

phonon dispersion from zero until it dominates the anharmonicity. Our 

basic conclusion is that one should really think of two different 
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transitions; a 11 phonon localization transition 11 which is analogous to 

the Mott transition for electrons3 , and a 11 spectral transition 11 asso

ci a ted with a change in the character of the infrared absorption. 

The first transition, phonon localization, is a cooperative 

effect, and because of this it is predicted to occur only when the 

optical phonon density is appreciable. In practice, one may only be 

able to produce a sufficient phonon density to observe this transition 

in microscopic systems. We see little prospect of finding real macro

scopic systems for which phonon localization would be anything like a 

true phase transition. 

The spectral transition is never a phase transition. Rather, it 

is a change in the character of the elementary excitations which 

occurs as the physical parameters of the system c~ dispersion/anharmo

nicity) are changed. This transition is closely related to the possi

bility of forming two-phonon bound states. We associate phonons with 

a linear combination of single vibrational excitations on each mole

cule, and two-phonon bound states with double vibrational excitations 

of single molecules. Typical 11 molecular 11 phenomena, such as saturat

ion, can occur only if the phonon dispersion is small enough compared 

with the anharmonicity to permit the formation of these bound states. 

The spectral transition coincides with the appearance of the bound 

states. Phonon dispersion which is near the critical transition value 

will lead to anomalous spectral features. 

Our investigation· of anharmonic phonon systems is based on a 

simple model Hamiltonian which is developed in the following section 

and in Appendix A. The mode 1 is constructed so that the ratio of 

dispersion to anharmonicity is a free parameter. By varying this 

-3-



parameter, we are able to describe the phonon localization transition 

(Section III), the appearance of two-phonon bound states (Section IV 

and Appendix B), and the spectral transition (Section V). 

II. Model Hamiltonian 

A simplified model of a system of coupled local anharmonic oscil

lators is presented here. One can think of each oscillator as corres-

ponding to a given vibrational mode of a single molecule in a molecular 

crystal. Alternatively, the oscillators may correspond to the set of 

degenerate stretching modes in a single molecule--like the C-H bonds 

in benzene. The most important simplification (and limitation) of 

this model is that it considers only one optical mode or phonon branch, 

and the coup 1 i ng to other qpt i ca 1 modes and acoustic phonons is 

ignored. One consequence of this is that the mode or phonon decay 

processes are neglected. 4 's,s 

The only important anharmonicity in the model is assumed to be 

11 intramolecular11
, so the potential energy need only be expanded to 

second order in the 11 i ntermo 1 ecu 1 ar 11 coup 1 i ng, but i ntramo 1 ecu 1 ar 

terms up to fourth drder are included in the Hamiltonian. If xn and 

Pn are the relevant normal coordinate and conjugate momentum of the 

nth oscillator, then the classical Hamiltonian is 

p 2 

He = ~ (2~ + ! K x~ + yax~ - yx~) + n~m Dnmxnxm , 

where m is the effective mass and K is the spring constant of the 

oscillator, y3 and y are anharmonic coefficients, and the Onm are the 

coefficients of intermolecular coupling. We assume that anharmonic 

and intermolecular effects are relatively small. This assumption 

means 
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m nm 

I Y3XI« K (2) 

I y }(2 I « K 

where x is a root-mean-square value of any of the xn. 

To lowest order, the classical Hamiltonian describes a set of 

harmonic oscillators, so it is natural to quantize the Hamiltonian 

through the substitution 

xn 7 J 2~~m (a~ + an) 

P 7 J 1'1./Km i (a+ - a ) 
n 2 n n · 

+ Here an (an) corresponds to a "local" phonon creation (annihilation) 

operator. When xn and Pn are replaced by the appropriate creation and 

annihilation operators, the resulting Hamiltonian has both 11 phonon

conservi ng11 and "phonon-nonconservi ng" terms. The phonon-conserving 

part of the Hamiltonian, H, is essentially a Bose version of the 

Hubbard model 7 with attractive interactions. 

H = + + + + 
~ £ an an + n~ ~nman am - r~ an an an an 

The zero-order phonon energy, £, "hopping" matrix elements, ~nm, and 

phonon-phonon interaction strength, r, are determined from the corres

ponding coefficients appearing in the classical Hamiltonian, He in 

Eq. (1). We will take the phonon conserving Hamiltonian of Eq. (4) as 

our basic model. In Appendix A it is shown that the terms left out of 

this Hamiltonian are unimportant since they can be largely eliminated 

through a similarity transformation if the conditions of Eq. (2) are 

met. The similarity transformation renormalizes the energies£, ~nm' 

and r. 
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The model Hamiltonian of Eq. (4) must be approached with caution. 

Formally, it is not well defined if r is positive since it then de

scribes a system of Bosons with attractive interactions, and the 

energy of the system can become arbitrarily negative. 8 This diffi

culty can be circumvented when necessary by an appropriate restriction 

of the allowed states of the system. 

In many ways, the physics of sys terns described by the model 

Hamiltonian (Eq. (4)) depends on only one parameter; the relative size 

of r compared to Anm· If the Anm are zero, the model reduces to a set 

of anharmonic oscillators with energy levels. 

On the other hand, if r is zero the Hamiltonian can be diagonalized. 

For example, if N oscillators are distributed along a line with pe

riodic boundary conditions, and A is nonzero only for nearest-neighbor 

interactions, then the Hamiltonian can be written as 

H = L [e + ~ sgn(A) cos(q)] a+q a 
q q 

where W = 4A is the phonon bandwidth, sgn(A) is the sign of A, and 

+ = 1 ~ e-iqn a+ 
aq JN n=l n 

is the creation operator for a delocalized phonon with crystal moment

um ~q. Note that zone-center phonon energy is shifted away from the 

11 molecular 11 energy, c:, by ~Wsgn(A). The sign of A (sgn(A)) will turn 

out to have a significant influence on the behavior of the spectral 

transition discussed in Section V. 

(5) 

(6) 

(7) 

For many materials, the important parameters r and W which cha

racterize this model can be approximated. Intramolecular anharmonic

ity r can be obtained from molecular spectra. 9 Herzberg10 has tabulated 
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values of r (called w x in his Table 39) for a great many diatomic e e 
molecules in units of cm-l (= 1.23 x 10-4 eV = 1.44 K8 degree).ll 

Three examples are 

r = 117.9 em -1 for H2 

r = 52.05 cm-l for HCl 

r :::: 11.67 em -1 for c2 
The second important quantity is the phonon bandwidth, W, which is 

determined from the values of ~nm· Estimates of W come from theor

etical calculations and experimental evidence such as neutron scatter-

ing and Davydov splitting. Optical phonon bandwidths for the solid 

forms of the materials sited above are 

W - 4 cm-l for solid molecular pa~ahydrogen 12 

W - 50 cm-l for solid HC1 13 

W - 130 cm-l for diamond14 

The width W in HCl is considerably larger than it is in H2 because 

long range electrostatic interactions are small in hydrogen. 13 

In our model, the really significant measure of anharmonicity 

is the ratio W/f, 

W/f - 1/30 for hydrogen 

(8) 

(9) 

w/r - 1 for HCl (10) 

w;r - 11 for diamond 

The parameters r and W obtained for these three examples are typical. 

Thus we feel that most ordinary semiconductors, like diamond, are too 

weakly anharmonic to ·exhibit striking phonon localization effects like 

two-phonon bound states. Some molecular solids like H2 which exhibit 

very little phonon dispersion will clearly show molecular properties. 

The most interesting cases will be molecular solids like HCl in which 

the phonon dispersion and anharmonic effects are equally important. 
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There are other materia 1 s where this mode 1 Hami 1 toni an might 

profitably be applied because dispersion and anharmonicity are compar

able. The transition-metal carbides 15 and metal hydrides and deuterides 16 

are interesting possibilities. For example, the optical mode frequen

cies in NbC form a fairly narrow band (W::::: 80 cm- 1) and one optical 

phonon cannot decay into two acoustic phonons and conserve energy. 

Optical phonon 

and de uteri des. 

ably less than 

bandwidths seem to vary a great deal in metal hydrides 
-1 . In PdD0. 63 , W::::: 100 em , but 1n NbD0 . 75 , W is prob-

20 cm- 1. 16 The anharmonicity parameter, r, in these 

materials may be quite large because of hydrogen's small mass. 

II I. Phonon Loca 1 i zat ion Transition 

In general, exact eigenstates of the model Hamiltonian developed 

in the previous section will be extremely complex. 8 We would like to 

know whether the basic physics of this mode 1 is better described in 

terms of phonons or 1 oca 1 osci 11 a tors. Here, we base our criterion 

for selecting between these two limits on estimates of the free energy 

The true free energy of the system is, of course, independent of the 

way we describe the system, but the approximate free energy estimated 

from the perturbation approach does depend on which part of the 

Hamiltonian is chosen as the unperturbed Hamiltonian. Extended phonons 

are assumed to be "stable" only if they yield a lower approximate free 

energy than the local oscillators. 

The Hamil toni an of our system can be separated into two parts 

H = H + oH 
0 

with H
0 

and oH being the unperturbed Hamiltonian and the perturbation 
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respectively. Then, the true free energy of the system has an upper 

bound. 17 

F ~ F + <oH> , (12) 
0 0 

where F 
0 

is the free energy of a system described by H
0

, and <oH> 
0 

denotes the thermodynamic average of oH in the H
0 

system. 

The two obvious choices for H
0 

correspond to treating either the 

phonon hopping or the anharmonicity as a perturbation. In the former 

case corresponding to the l oca 1 osci 11 a tor description, we take the 

11 local 11 part of H as H
0

. 

so 
oH = ~ ~ a+ 

n;tm nm n am · 

In this case, it is found that <oH>
0 

= 0, and 

F10c/N = -~ Ln(Z) .. 

Here (see Eq. (5)) 

Z = ~ exp(-~[Qe - Q(Q - 1)f]) , 
Q=O 

and ~ is the inverse temperature in units of Bo 1 tzmann 1 s constant. 

Formally, Z does not exist (for positive f) because its power series 

diverges. However, we restrict ourselves to the case where the aver-

age excitation of each local oscillator is so limited that for all 

levels that are significantly populated, ~Q(Q-l)f <<1. Then the 

system has an approximate partition function 

= i [1 + Q(Q-l)~r + 1Q2 (Q-l) 2 ~2r2 + .... ] exp(-~Qe) 
Q=o 2 

To order (~f) 2 the local free energy obtained from z• is 

Floc = -N-
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where the Bose factor 

gives the average number of phonons per asci ll a tor assuming r and t:. 

are zero. 

For the case corresponding to the phonon description, the an

harmonicity is written as a phonon-phonon interaction and is treated 

perturbatively. We take H
0 

to be a mean-field approximation of H, 

that includes not only the harmonic part of H but also the mean field 

contribution from the anharmonic terms in H. Then, oH contains only 

corrections to the mean field approximation from the anharmonic terms. 

This case is more clearly described if we make the model a little more 

specific. So we assume a simple lattice of oscillators. The index n 

1 abe 1 s an asci 11 a tor at a 1 att ice point Rn, and the phonon hopping 

parameters t:.nm depend only on the relative separation (Rn - Rm). If r 

were zero, the Hamiltonian on the lattice could be written simply in 

terms of extended phonon operators. (A simpler one-dimensional case 

is given in Eqs. (6) and (7)). 

H(r = o) 

where 
iq(Rn - Rm) 

eq = e + ~ e t:.nm 
n and 

+ 1 -iq·Rn + 
aq = JN ~ e an 

The sum over q is restricted to the Brillouin zone, and N is the 

number of lattice points. For r 1 0, the anharmonic terms can also be 

written in terms of the extended phonon operators. 

+ + r + + 
-r~anananan = --N ~ ak ak ak ak1 

n k 1 'k2 'q 1 +q 2-q 2 
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If one requires that H
0 

be a single-particle Hamiltonian, minimization 

of the free energy is equivalent to making a Hartree-Fock-like factor

; zat ion of the interaction term in the Hamil toni an. That is, if 

(1,2,3,4) correspond to specific k-vectors, 

+ The only nonzero thermodynamic averages are <ak ak>
0

. This means that 

in the zeroth order, the interaction term in the Hamiltonian gives a 

mean field contribution with 

+ + r + + -r ! anananan ~ - 4 N ! <akak> ! aqaq . 
n k q 

Let C be the number of optical phonons per oscillator 
1 + 

C = N ! <aKaK> 
K 

Then the unperturbed Hamiltonian H
0 

in this case becomes 
+ 

HMF = ! (~q - 4 Cf) aqaq . 
q 

The energy shift of each phonon (-4Cr) is twice· what a naive guess 

waul d suggest. The free energy is obtai ned from Eq. (12). Si nee we 

have assumed that ~r << 1 and~~<< 1, we keep terms only up to order 

(~f)2 and (~~) 2 . We find 

(23) 

(24) 

(26) 

FMF F ~ = ~oc -~ Q2 n(n+1)/2 + 2~r2 (n(n+l))2 , (27) 

where n is still the phonon occupation number given by Eq. (18), and 

W = ~ ! ~2 m nm 

is comparab 1 e to, but somewhat sma 11 er than the bandwidth parameter 

tabulated in Eq. (9). Typically, W ;: W/3. Since n increases with 

temperature, FMF becomes larger than Floc at a sufficiently high 
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temperature, and the localized oscillator becomes "stable11
• In other 

words, the localized oscillator description is more appropriate. The 

approximate phase boundary between 1 oca 1 i zed asci 11 a tors and de 1 oca-

1 i zed phonons is obtained by letting Floc = FMF' and the result is 

* r;w , sinh(t:/(K8T )) = 
* where T is the transition temperature. This equation was used to 

construct the phase diagram shown in Figure 1. As can be seen in this 

figure, the hypothetical transition from anharmonic oscillators to 

interacting phonons occurs in our model as W/f increases from zero to 

a large number. Since the phonon density is related to the tempera

ture, a transition from localized to extended phonons also occurs if 

the temperature is decreased and the ratio W/f is held constant. This 

behavior is in contrast to the metal-insulator transition where 

increasing temperature generally delocalizes electron states. 3 

The above phonon localization transition corresponds to a gradual 

change in the nature of the vibrational excitations of the system and 

is not a true phase transition. For W ~ r, the transition appears at 

* K8T ~ t:. A temperature high enough to excite a significant number of 

phonons (K8T:::: t:) would be much higher than the temperature that 

characterizes the interaction energy of particles (KBTC:::: W or f); the 

phonons become a hot fluid. For very sma 11 W/f, Figure 1 predicts a 

low transition temperature, but the mean-field approximations used 

here are inaccurate for the case of a dilute gas of strongly interact

ing phonons. 18 

There is a practical reason why the phonon localization transit

ion described here may be difficult to observe. It is simply not easy 

to put a large number of phonons into a phonon band. Optical phonon 

-12-

(29) 



lifetimes are generally not long (10-ll sec is a typical number). 

This means that one probably cannot excite a sufficiently large number 

of phonons in a given optical band through optical pumping to observe 

the phonon localization transition. Thermal excitation of a large 

number of opti ca 1 phonons is not 1 ike ly in mo 1 ecul ar so 1 ids because 

these materials have relatively low melting or dissociation tempera

tures, Tw and K8TM«~. A large number of optical phonons can be 

thermally produced in semiconductors like diamond for a high TM. For 

- * such materials, however, r/W is small, and hence T is still greater 

than TM" For example, K8TM"-2£ and W/r~3.5 for diamond, so that 

* * K8T ~3e and T >TM. (Also, the diamond-to-graphite transition becomes 

increasingly likely as the temperature is raised.) It is possible 

that a gradua 1 phonon l oca 1 i zat ion could be observed in some other 

materia 1 where K8 T M > ~, but we have not yet been ab 1 e to find a 

reasonable candidate. 

Even though a true phonon localization phase transition is prob-. 

ably difficult to observe in macroscopic systems such as solids, one 

can find small systems in which localization effects have been observed. 

The benzene molecule is a good example. 19 - 23 The highest frequency 

modes in benzene correspond to stretching of the C-H bonds. The model 

Hamiltonian can be applied to this molecule if it is viewed simply as 

a set of six coupled vibrational units with r = 57.6 cm- 117 and W ~ 35 

cm- 1. 19 It is possible to highly excite the C-H bonds for example, 

from v = 0 to v = 1-9~ The measured excitation energies of singly or 

doubly excited benzene correspond to phonon frequencies if phonons are 

interpreted as vibrational modes of the entire molecule. However, the 

energies of the higher excitations (v= 5 to 9) correspond more close-
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ly to the energies of an isola ted anharmonic C-H bond. Thus the 

vibrations in benzene appear to undergo a transition from extended to 

localized modes as the energy (or effective temperature) of the system 

is increased. Physically, phonon localization is associated with 

small transport coefficients. This means that it will take a relative

ly long time for the energy to diffuse away from a single highly 

excited C-H bond in benzene. 

Phonon localization transistions can probably also appear in 

molecular doped crystals, such as pentacene in benzoic acid. Higher 

doping concentration decreases the distance between impurity mole

cules, increases the intermolecular coupling, and may induce a dis

persion in their coupled molecular vibration. Yet the impurity system 

may still be small enough, and the corresponding phonon lifetime may 

be long enough, so that a phonon localization transition could occur. 

IV. Two Phonon Bound States 

Excitations which we would now call two-phonon bound states have 

been known for a long time. For example, Gush, et al., observed 

"double transitions" in solid hydrogen in 1957. 24 More recently, 

Cohen and Ruva 1 ds interpreted an anomaly in the two-phonon Raman 

spectrum of diamond in terms of two-phonon bound states. 25 This 

interpretation stimulated a good deal of interest and criticism.26 -2 9 

Two-phonon bound states are of obvious interest because they can 

be observed spectroscopically. 9 In addition, we believe that these 

bound states are closely related to the spectral transition, to be 

discussed in Section V. There we will argue that systems which can 

support bound states are sufficiently 11 mol ecul ar" to show effects 

-14-



normally associated with the absorption spectrum of isolated molecules. 

Here, we consider bound states of the mode 1 Hamil toni an for a 

one-dimensional lattice, and an artificial three-dimensional system 

characterized by a semicircular density-of-states. Much more elaborate 

two-phonon bound state calculations have been performed by Bogani and 

others. 9 d 3 ,2 9 - 31 Our presentation here may still be of interest 

because of its relative simplicity. 

We first consider two phonons in the one-dimensional lattice 

described by Eqs. (6) and (7). For this case, any two phonon wave-

function can be written as 

1 N + + I ljl> = J7»JN I g a am I 0> , 
v£.n n m=1 nm n 

' 
with gnm = gmn· Since the system is translationally invariant, one 

should consider only those llJI> which are also ei genstates of the 

translation operator, and then, 

gnm = exp(iq(n+m)/2) g(n-m) 

where q is the center-of-mass wavevector of the system, and lqiS n. 

We introduce new basis states lmq> which simplify the notation. 

(30) 

(31) 

lm > = 1 ~ eiq(n+m)/2 a+ a+ I 0> (32) 
q ~2N _1 · n n+m n-

Physically, lmq> describes two phonon excitations separated by m sites 

with a tota 1 crysta 1 momentum 1'lq. Any two phonon wavefunct ion with a 

wavevector q can be written as a linear combination of the lmq>. For 

examp 1 e, the state llJIF> which describes two free phonons with wave

vectors k1 and k2 is 
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We are interested in finding the bound state energy and wave 

function. This is carried out in Appendix B. In the derivation, we 

need to eva 1 uate <m~l H 1 mq>. The mode 1 Hamil toni an of Eq. ( 4) appears 

to have a simple form when its actions on the states I mq> is 

considered. 

The above equation shows how the physics of two interacting phonons is 

closely related to the physics of a single particle with 11 hopping 11 

matrix element Ucos(q/2) subjected to a static 11 impurity potential 11 

of strength -2r at the origin. The two-phonon system can be regarded 

as equivalent to a single-particle system. The symmetry of the two 

phonon wavefunction means that the only physically significant states 

of the equivalent single particle system are symmetric with respect to 

lmq> 7 I -mq>. Two-phonon bound states are equivalent to single 

particle states which are bound to the 11 impurit/'. The bound state 

energy for the above one-dimension a 1 system is found to be (see 

Appendix B) 

E8 = -2 Jr2 + (2.6. cos(q/2)) 2 + 2e 

For larger, E
8 

approaches the energy of the doubly excited anharmonic 

oscillator, and for small r, E8 approaches twice the minimum phonon 

energy. The bound state wavefunction obtained from Hl~8> = E8 1~8>, 
is 

where 

r = -sgn(~) cjr2 + (2.6. cos(q/2))2 - r)/(2~ cos(q/2)) 
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The overlap of the two phonon bound state I t]J8> with the wave

function describing two free phonons I t]JF> is of particular interest. 

As we shall see later in Sec V, the square of this matrix element, 

l<tJJ8itJJF>I 2, is proportional to the oscillator strength of exciting 

a two-phonon bound state from a single-phonon state. Assuming that 

k1 and k2 which determine ltJJF> are small, but not identical, we let 

R = ~I<\]JFI\]Js>l2 = (r3) {Cfr2 + (2~)2 + 2~)2 Jr2 + (~)2}-1 (38) 

The factor N/2 is chosen to normalize R to unity for larger. Clearly 

R can be considerably enhanced or suppressed depending on the magnitude 

of r and the sign of ~. 

Except for some quasi-one-dimensional systems like polymers, 32 it 

is somewhat unrealistic to consider bound states of the one-dimensional 

model, since any nonzero r can lead to bound states. Three-dimensional 

bound states appear only for r greater than some minimum value. Exact 

calculations of the properties of three-dimensional bound states in a 

lattice require numerical work, so for clarity we consider a ficticious 

system called the 11 semicircular model 117 in which the single-phonon 

energy levels form a semicircular density of states, p(E), of width W. 

p(E) = n~2 JW2 - (2(E-e))2 

We consider only the two-phonon bound state with center-of-mass wave

vector equa 1 to zero, and assume that a single q = 0 phonon has an 

energy e = e + W/2 with the sign of W/2 determined by the sign of ~. 0 -

Making these assumptions, one can establish the properties of the 

bound states using the Greens function methods commonly employed for 

static impurity problems33 (see Appendix B). We find that a q = 0 
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bound state can be formed only if W < 4r, and the bound state energy 

is 

E - 2£ - ~ c4r + ~) B - 2 w 4r 

The two-phonon continuum (two free phonons) and bound state energy 

levels as a function of W/r (for the semicircular model) are shown in 

Figure 2. The normalized probability, R, for forming bound states out 

of lt\IF> for the semicircular model is also obtained in Appendix B. 

R = (4r) 2 (4r - W·sgn(~))/(4r + W·sgn(~))3 

When W is close to 4r, R can either be considerably greater than or 

less than 1 depending on the sign of ~. Values of R as a function of 

W/r for the semicircular model are shown in Figure 3. The upper curve 

corresponds to negative ~ and the lower curve corresponds to positive 

~. Note the logarithmic scale for R in this figure. 

V. Infrared Absorption and the Spectral Transition 

Measurements of the infrared absorption spectrum provide an 

important probe of phonon systems. We will investigate the infrared 

absorption of tne model Hamiltonian of Section II, and show that this 

absorption depends sensitively on W/r. The model exhibits a transit

ion from a phonon-like to a molecule-like system as W/r is decreased 

to the point where two-phonon bound states can appear (W/r = 4 for the 

semicircular model). We will also show that when W/r approaches this 

critical value from below, saturation effects can either be consider

ably enhanced or suppressed depending on the sign of ~. 

As a first step we calculate the linear response of the model 

Hamiltonian to an applied radiation field. The perturbation of the 
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Hamiltonian is taken to be 

* H' = -e I xn E(n,t) . 
n 

* Here, e is the effective oscillator charge, E(n,t) is the electric 

field directed along xn at the nth oscillator site at time t. The 

coordinate xn can be written as (a~ + an)tfl/(2..j'Km'))!z. using Eq. (3). 

Strictly speaking, H' should be subjected to the similarity transform

ation described in Section II and Appendix A. Among other things, 

this transformation would incorporate many-phonon processes into the 

linear response function. 9 However, the similarity transformation 

yields a small correction to the overall absorption and it will be 

ignored here. The linear response approach taken here also neglects 

polariton effects.34 

The power absorbed by the model system is 

* 
P = e 

m <I Pn E(n,t)>, 
n 

+ 1 
where the oscillator momentum is p = (a - a ) i (~2)~ and <> is n n n 

a time average. The linear response is obtained by calculating <P>/E2 

to first order in H'. Assuming the system is initially in an eigen

state I j> of the unperturbed Hamiltonian, and the electric field is 

(42) 

(43) 

characterized by a wavevector q and a positive frequency w, the normal

ized absorption coefficient is 

ct(w). = r { l<ml a+lj>l 2 - l<mla !j>! 2 } o(w- lw -w.p , (44) 
J m q q m J 

with J a(w)dw = l. 
0 

Here a~ is the phonon creation operator defined in 

Eq. (21), and m indexes the eigenstates of H with energies1'lwm. The 

absorption coefficient a(w)j consists of a positive part ~!<mla~lj>l 2 
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which describes the photon-to-phonon process and a negative part 

"'l<mlaqU>I 2 which describes the phonon-to-photon process. At zero 

temperature, the physical absorption is correctly given by Eq. (44) if 

lj> is taken to be the ground state. In general, however, one should 

average a(w)j over initial states. The actual absorption is propor

tional to 

a(w) = l P. a(w)J. , . J 
J 

where P j is the probability of finding the system in the state I j>. 

The following sum rule can be easily derived from the definition of 

a(w). 

j a(w) dw = 1 
0 

(45) 

(46) 

There are many aspects of nonlinear response to an applied field. 35 

The only nonlinearity considered here is the effect of the applied 

field on the probabilities Pj' Physically, we are interested in how 

the absorption of the system changes as more and more phonons are 

created, and the Pj's are correspondingly altered. 

In two special cases, the absorption coefficient can be easily 

calculated from Eqs. (44) and (45). The first case is the phonon 

limit, r = 0, where 

a(w) = o(w - wq). ( 47) 

Here 1iwq is the energy of a phonon with wavevector q. Since a(w) is 

independent of the Pj in this case, no saturation occurs and a(w) 

remains unchanged. The absorption line is infinitely sharp because no 

phonon decay or scattering processes are contained in the model Hamil-

tonian when r = 0. 
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The second simple example is the molecular limit where W = 0. 

Then 
00 

a(w) ::: I CPm - Pm+l) Cm+l) o(w- [£ - 2mrJtn) . 
m=O 

Here pm is the probability of finding any asci 11 a tor in its mth 

excited state. If we assume that an oscillator is either in its 

ground state or its first excited state. Then P
0 

= 1 - C and P1 = C, 

where C (Eq. (25)) is the density of excited asci 11 ators, and a(w) 

becomes 

a(w) = 2C o(w - [£-2f]/~) + (l-2C) o(w - £/fi) 

In practice, C can be made non-zero by resonant excitation of a strong 

beam at ~e. Then a(w) is the absorption spectrum observed by scan

ning a weak probe beam around huf\.£ and 1iW"'(£-2f). The peak at 1lw:::e 

decreases with increasing C as a result of saturation, while the peak 

at~e-2f describes absorption due to excitation of population in the 

first excited state to the next higher excited state. In the real 

spectrum, the o function peaks would of course be broadened to peaks 

with finite widths. 

When r and W are both nonzero, an exact calculation of a(w) is 

impossible. However, if r is not large compared with W, the mean

field approximation described in Section III may be justified. The 

absorption can be calculated after the interaction term in the Hamil

tonian is factorized as was done in Eq. (24), the result is 

a(w) = o(w - (wq - 4 cr~)) ' 

and C is again the density of excited oscillators, or phonons per 

oscillator. There is no saturation, and the only nonlinear effect to 

be observed in the mean-field approximation corresponds to a line 
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shift to lower frequencies which occurs when a large number of phonons 

are created. For example, if r = 50 cm-l, a line shift of 2 cm-l 

would occur if one could create one phonon for every 100 oscillators. 

One unrealistic feature of the mean-field approximation is that 

the interacting phonons appear to have infinite lifetimes. In fact, 

if W/r is not too small, Fermi's Golden Rule can give an estimate of 

the actual lifetime and the corresponding minimum linewidth, ~ • 
.-n(~) ::::: cr2 ;w. (51) 

A second limitation of the mean field approximation is that it 

11 breaks down" when W/r becomes sma 11. This breakdown is signa 11 ed by 

the appearance of two-phonon bound states. An alternative approach is 

necessary to capture the effects of these bound states on the absorp

tion coefficient. In the isolated molecule limit (~70), we know that 

the most important absorption peaks correspond to the transition from 

the lowest energy state to the first excited molecular vibrational 

state, and from the first to the second excited 1 eve 1. When ~ is 

small but nonzero we expect the two peaks to persist, but in this case 

an alternative description is that the first peak corresponds to the 

creation of an additional nearly-free phonon in the system and the 

second peak corresponds to the formation of a two-phonon bound state. 

The bound state is the combination of one phonon created by the photon 

and a second phonon which is already present in the system. 

The absorption spectrum of N anharmonic oscillators with NC 

phonons cannot be easily calculated because the phonons interact 

through their anharmonicity. We circumvent this many-body problem by 

considering a smaller 11 reduced system" which initially has only one 

phonon in 1/C sites. This reduced system, which has the same phonon 
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density as the original system, exhibits two absorption peaks. The 

first peak at ~w = c:
0 

results from one-photon excitation of a more or 

1 ess free phonon at q = 0 where c: = c: + sgn(L.l)W/2 is the phonon 
0 

energy. The second peak at11w = E8 - c:
0 

is due to one-photon excitation 

of the system from a one-phonon state to a two-phonon bound state with 

E8 as the binding energy. The probability that the system can be 

excited into a two-phonon bound state should be proportional to 

I<~FI~s>l 2 , as it is the square of the projection of the bound state 

on the two free phonon state. Following the definition of R in 

Eq. (38) and the approximation that the system initially has one 

phonon in N=l/C sites, we have 

when C is small. The area under the secondary peak is thus 2CR, and 

from the sum rule (Eq. (46)) the area under the primary peak must be 

(1 - 2CR). Energy shifts and broadening of these peaks will be of 

order CW instead of -4Cf and ~ cr2 /W as was the case for large W/r18 

(see Eqs. (50) and (51)). For the moment, we ignore the peak broaden-

ing and the small energy shifts to obtain a simple expression for the 

absorption in the semicircular model for W/f~4. 

Essentially the same absorption coefficient as is presented here was 

obtained in the molecular limit (Eq. (49)) except now the excited 

osci 11 a tor concentration C is sea 1 ed by R, and the absorption peak 

frequencies correspond to a q=O phonon energy and the difference 

between the two-phonon bound state energy and a single q=O phonon 

energy. The two expressions for the absorption (Eq. (53) and (49)) 

become identical as W ~ 0. As in the molecular case, this a(w) is the 
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absorption spectrum seen by the weak probe beam, while C can be made 

nonzero by an intense pump beam at w0~e /~. ""' 0 

We are, of course, interested in seeing how the molecular cha-

racter of the absorption disappears as W approaches 4r. The sign of ~ 

makes a big difference in this transition. When ~ is negative, indi

cating that q=O phonons lie at the bottom of the band, increasing W/r 

moves the energy of two q=O phonons and bound two-phonon states closer 

together and makes the latter look more like the former. This is 

reflected by the two absorption peaks in Eq. (53) approaching each 

other with the bound-state peak 11 stealing 11 intensity from the primary 

peak as they merge. For positive ~. increasing W/r shifts the free 

and bound two-phonon states further apart. Consequently, the absorp

tion peaks separate more and the bound-state peak gradually vanishes 

as ~ ~ 4. The peak positions for both positive and negative ~ are 

shown as functions of W/r in Figure 4. Note the different frequency 

scales used for the two signs of ~. 

The absorption spectrum of Eq. (53) is unphysical because the 

peaks are infinitely narrow and the factor R diverges when~ is nega

tive. More sensible results are obtained if we assume the sharp peaks 

are actually Lorentzians with a half-width d. Physically, for nega-

tive ~. R corresponds to the 11 Size11 of the two-phonon bound state, and 

this size appears to diverge as the binding energy goes to zero. In 

fact, R cannot exceed the average vo 1 ume per phonon and still make 

sense. This can be seen formally in Eq. (53). Since I~F>and 1~8> are 

normalized, 2CR should be less than one. The expressions for R in 

Eqs. (38) and (41) correspond to the large N or small C limits. The 

corresponding expressions for larger C are difficult to obtain. Here 
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we assume a simple interpolation formula for I <~FI ~8>1 2 which appro

aches the exact result for small C and satisfies the upper bound 

implied by Eq. (52). 

(54) 

This correction to I<~FI~8>1 2 is at best only a reasonable guess. 

Actually, when 2CR becomes larger than one, the two-phonon bound state 

appreciably overlaps other single-phonon states and we are faced with 

true ly unso l ub 1 e many-body effects. By using I <~F I ~8> 1 2 as given by 

Eq. (54) we have artificially limited the two-particle bound state 

size so that the many-body effects appear to be small. 

Practically speaking, the correction toR given in Eq. (54) is 

probably unimportant and unnecessary. Physically achievable phonon 

concentrations are usually small in macroscopic systems and it is 

unlikely that any many-body effects beyond the observation of two

phonon bound states will be detectable. However, a clear graphical 

presentation of the type of spectra one would expect from this model 

necessitates picking a relatively large C so that the secondary peak 

can be easily seen. The series of absorption spectra shown in Figure 5 

are obtained from Eq. (53) using the approximate I <~FI~8>1 2 (Eq. (54)) 

in place of 2CR, and the delta-function peaks are replaced by Lorentzians. 

Spectra on the left in Figure 5 correspond to negative 6. and 

spectra on the right correspond to positive 6.. The spectra are shown 

for a sequence of values of W/(4f) = 0, 1/3, 2/3, and 1. The curves 

show the system passing from the molecular limit on top of the figure 

to the phonon limit at the bottom. Note that for graphical clarity, 

we needed different frequency scales for the different signs of 6.. We 

picked the phonon concentration C to be 0.03 for 6. < 0 and C = 0.3 for 
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~ > 0. The peak half-widths, d, were chosen to be 0.1 r for ~ < 0 and 

0.3 r for~> 0. The choices were again motivated by a desire to show 

pictorially how the secondary peak grows for positive·~ and shrinks 

for negative ~. Note that for the case ~ < 0 and W/ ( 4r)=2/3, the 

secondary peak is actually larger than the primary peak even though 

the phonon concentration is only three percent. 

VI. Discussion 

Results presented here indicate that it is often not appropriate 

to view the phonon vs. l oca 1 osci 11 a tor prob 1 em as a di cotomy. We 

showed in Section II I that the phonon 1 oca 1 i zat ion transition was 

gradual, and in subsequent sections we showed that systems which allow 

two-phonon bound states can exhibit spectral properties characteristic 

of both phonons and local oscillators. 

We are hoping that the model presented here can be extended and 

applied to the point of giving difinitive comparisons with experiments. 

Some modifications will clearly be necessary to make these comparisons 

realistic. Many real materials (like HCl) are not characterized by 

one oscillator per unit cell. Dipole-dipole forces play an important 

role in the 11 interesting 11 modes of molecular crystals for which W:::; r 

and one should modify the ~·s to incorporate the long range coupling. 

For other materials which might be described by W:::; r, like the transi

tion metal carbides15 and metal hydrides 16 , one must consider all 

three phonon polarizations. 

The stimulated Raman effect37 is a good example of how theoretical 

results based on local oscillators can be very different from results 

obtained from a theory which uses phonons as basis states. 38 We feel 
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that careful applications of models similar to the one presented here 

could help resolve the sort of controversies which have appeared in 

the theory of the stimulated Raman effect. 38 
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APPENDIX A 

The full Hamiltonian obtained by quantizing the classical Hamiltonian 

is the phonon-conserving Hamiltonian H given in Eq. (4) plus additional 

terms given by 

+ ~ + + 
h = g I (a + a )3 + I n2m (an a + an am) 

n n n n:fm m _ [ t~ a~ a~ a~ + an an an an +J 
6 I + + + + 

n 4(an an an an + an an an an) 
(Al) 

We seek a transformed Hamiltonian, H', given by 

H' = eiS [H + h] e-iS (A2) 

with S chosen so that 

(A3) 

where 
(A4) 

The required transformation is 

(A5) 

r . . + 
+ + + a~ •n •n •J _ ;r I an an an an - an an an an + 8(a an an a -n n 

241'; n + + 
an) + 12(an an - a n 

Note that S is small if I'; is large compared to~. g, and r, so it 

makes sense to consider approximations to H which are low order in S. 

To first order in S, H' is identical to H given in Eq. (4). To second 

order, 
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H' 2 = H + i[S, (H - H +~h)] , (A6) 
0 

and H2 also has phonon-conserving and phonon-nonconserving terms. The 

corrections to H are of order ABle where A and B are either a ~. g or 

r. Again we argue that the phonon-nonconserving terms are relatively 

unimportant, and because they are smaller than before they will be 

ignored. If necessary these terms could be treated using perturbation 

theory or another unitary transformation. All except one of the phonon-

conserving terms lead to a simple renormalization of the energies, e, 

~nm' and r which appears in the model Hamiltonian. The one additional 

phonon-conserving term which appears in H2 is a three phonon interaction 

of the form 

f2 ~ + + + 
e an an an an an an 

n 
(A7) 

We ignore this three particle interaction. 
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APPENDIX B 

In order to obtain the bound state energy, E8, and overlap proba

bility, R, for the semicircular model, we first use Greens functions 

to obtain the corresponding quantities for the one-dimensional model. 

A simp 1 e alteration of the Greens function then yi e 1 ds the desired 

results for the semicircular model. We consider only the case in 

which the center-of-mass wavevector, q, is zero, and ignore this 

subscript. If the energy 2z is also ignored, Eq. (35) becomes 

Him> = 2~ Clm+l> + lm-1>)- 2f o IO> m,o 
The Greens function is defined as 

G(Z)nm = <n!(Z-H)-l lm>, 

and the unperturbed Greens function (G(Z)nm0
) is defined analogously 

except that r is taken to be zero. The free particle Greens function 

can be obtained by writing In> as a linear combination of the plane 

wave eigenstates of the Hamiltonian for noninteracting particles, and 

for the one-dimensional model 

(Bl) 

(B2) 

G(Z) 0 = l/~Z2 - (4~) 2 
00 . (83) 

The perturbed Greens function can be written in terms of the free parti

cle Greens function 

G(Z)nm = G(Z)nmo + G(Z)moo 2r G(Z)om 

from which it follows that 

G(Z)nm = G(Z)nmo + G(Z)n
0
° [2f/(1+2fG(Z) 00°)]G(Z)

0
m0 

. 

The bound state is obtained from the isolated poles in G(z) which 

occur when 

1 + 2fG(Z) O = 0 . 
00 

(84) 

(85) 

(B6) 

Except for the ignored constant, 2z, solution of the above equation gives 

E8 of Eq. (36), when q = 0. 
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The corresponding bound state energy for the semicircular model 

is obtained by modifying the unperturbed Greens function. Since the 

density of states, p(E), is related to the Green's function through 

p(E) = 1 lim (Im {G(E+i6)
00

}) , n: s: + 
u-+O 

a Greens function of the form 
G(Z) 5 = wz2 (Z - ~z2 - W2 ) 

00 

has the correct analytic structure, and yields the desired density of 

states (of width 2W because 2 phonons are involved). A solution of 

1+2r G(E8 )~0 = 0 gives 

for r > W/4 , 

which is essentially the result of Eq. (41). The apparent solution 

for sma 11 er r corresponds to taking the wrong sign of the square 

root in Eq. (88). 

The normalized probabilities R = ~ N I <ljJF I~JJ8> I 2 can also be 

obtained from Greens functions. To do this, let 

g(z) = <IJJFIZ~HIIJJF> · 

One of the eigenstates of His I~JJ8>, so an expansion of g(z) in terms 

of the eigenstates of H gives 

(87) 

(88) 

(B9) 

(810) 

g(z) = I<~JJFIIJJs>! 2 z-~ +(terms nonsingular as z-+ E8) . (811) 
B 

Let~ be a number much smaller than the difference between E8 and 

all other eigenvalues of H. Then 

E +~ 
lim f 8 g(E+io)dE = -in:l<lJJsllJJF>! 2 + (terms which vanish with~) (812) 
6-+o E -tl 

8 

We can take the limit of small k1 and k2 in I~JJF>, and in this limit 

g ( z) = ~ r G ( z) nm ( B 13) 
nm 
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Writing G(z)nm in terms of G(z)~m (Eq. (85)), 

( ) 2 + 2 1 2f 
g z = ~ N (z-2e )2 1+2fG(z)0 

0 0 00 

We know that 1 + 2fG(E8 )~0 = 0, so for z near E8, 

1 + 2fG(z)~0 : (z-E8) ~ (G(z)~d I z = E 
B 

In the limit of small ~~ only the singular part of g(z) contributes to 

the integral of Eq. (812), and using Eq. (815), 

2 1 - I <•I• 1·1· >I z N 2 d o )/ - '+'F '+'B 
(EB- 2eo) az (G(z)oo1z=Es 

or 
R = [(Ea-2eo)2 ~ (G(z)~o)lz=Es]-1 . 

When the values of E8, e
0 

= W/2 sign A, and G(z)~0 appropriate for 

the one-dimensional model are substituted into the above expression 

for R, Eq. (39) is obtained. When G(z)~0 is replaced by G(z)~0 and E8 
is given by (B9), the value of R for the semicircular model, Eq. (42), 

is obtained. 

-32-

(814) 

(B15) 

(816) 



t;· 

ACKNOWLEDGEMENT 

This work supported by the Division of Material Sciences, Office 

of Basic Energy Science, U.S. Department of Energy, Contract #W-7405-

ENG-48, and by AFOSR grant #77-3390, and by the Phys i ca 1 Sciences 

Branch at the NASA Ames Research Center, Moffett Field, California. 

-33-



REFERENCES 

1. R. Karplus and J. Schwinger, Phys. Rev. 73, 1020 (1948). 

2. J.I. Steinfeld, Molecules and Radiation: An Introduction to 
Modern Molecular Spectroscopy (Harper and ~w, New York, 1974). 

3. N.F. Mott, Metal Insulator Transitions (Taylor and Fracis, London, 
1974). --

4. L.A. Hess and P.N. Prasad, J. Chern. Phys. 72, 573 (1980). 

5. P.N. Prasad, Molecular Crystals and Liquid Crystals 58 [351]/39 
(1980). --

6. A. Lauberau and W. Kaiser, Rev. Mod. Phys. 50, 608 (1978). Optical 
phonon decay processes in solids are discussed in Section VII. 

7. J. Hubbard, Proc. Roy. Soc. A276, 238 (1963); A281, 401 (1964). 

8. E.H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963). Exact 
results presented in this and the following paper are for a ground 
state and elementary excitations of a one-dimensional system. 

9. F. Bogani, J. Phys. C11, 1297 (1978). 

10. G. Herzberg, Molecular Spectra and Molecular Structure; I. Spectra 
of Diatomic Molecules (New York;-van Nostrand Reinhold, 1950). 

11. Anharmonicity parameters for triatomic molecules are discussed by 
D.F. Smith, Jr. and J. Overend, J. Chern. Phys. 55, 1157 (1971). 

12. J. Van Kranendonk and G. Karl, Rev. Mod. Phys. 40, 531 (1968). 

13. V. Schettino and P.R. Salvi, Chern. Phys. 41, 439 (1979). 

14. 

15. 

C. Kittel, Introduction to Solid State Physics, Fourth Edition 
(Wiley, New York, 1971) P. ~ --

H.G. Smith, "Phonons 11 in ~opics in Current Phtsics #3; Dynamics 
of Solids and Li(uids ~ eutron~catter1ng, ds. S~. Lovesey 
and T. SprrnQer Springer-Verlag, New York, 1977) p. 77. 

16. T. Springer, "Investigation of Vibrations in Metal Hydrides by 
Neutron Spectroscopy" in T1aics in AVelied Physicsi #28; Hydrogen 
in Metals I, Eds. G. Alefe and~. olkl (Springer-Verlag, 
New York, T978), p. 75. Phonon dispersion is given only for the 
deuterides because of deuterium's relatively large coherent cross 
section. 

17. S.V. Tyablikov, Methods in the Quantum Theory of Magnetism 
(Plenum, New York, 1967)-. - -

-34-



v 

18. If the phonon density is low, r/W is large, and one is not dealing 
with bound states, then one can replacer by an effective 11 scattering 
matrix11 t (of order W) and obtain more reasonable results. See 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

J. Kanamori, Prog. Theo. Phys. 30, 275 (1963). 

R.G. Bray and M.J. Berry, J. Chern. Phys. 71, 4909 (1979). 

R.L. Swofford, M.E. Long, and A.C. Albrecht, J. Chern. Phys. 65, 
179 (1976). 

C.K.N. Patel, A.C. Tam, and R.J. Kerl, J. Chern. Phys. 71, 1470 
(1979). 

D.F. Heller and S. Mukamel, J. Chern. Phys. 70, 463 (1979). 

A.C. Albrecht, J. Mol. Spectrose ~' 236 (1960). 

M.P. Gush, W.F. Hare, E.J. Allin, and J.C. Welsh, Phys. Rev. 106, 
1101 (1957). 

M.H. Cohen and J. Ruvalds, Phys. Rev. Lett. 23, 1378 (1968). 

R. Tubino and J.L. Birman, Phys. Rev. Lett. 35, 670 (1975); Phys. 
Rev. B15, 5843 (1977). 

M.A. Nasimovici, editor, Phonons, (Rennes, France, Flammarion, 1971) 
Chapter X. 

A.D. Zdetsis, Solid State Commun. 34, 199 (1980). 

F. Bogani, J. Phys. C11, 1283 (1978). 

F. Bogani and V. Schettino, J. Phys. C11, 1275 (1978). 

P.R. Salvi, Chern. Phys. 40, 413 (1979). 

H.W. Siesler and K. Holland-Moritz, Infrared and Raman Spectroscopy 
of Polymers (Marcel Dekker, New York, 1980). - --

J. Callaway, ~)ac~um The5ry of the Solid State (Academic Press, 
New York, 197 apter . 

E. Burstein and F. De Martini, editors, Polaritons (Pergamon, 
Elmsford, NY, 1974). 

N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965). 

This assumption is a weak point of the theory, especially when~ 
is positive. It supposes that the excited phonons do not undergo 
a lot of intraband scattering before they decay. For~ < 0 this 
assumption may be justified because the q = 0 phonon lies at an 
energy minimum. Intrabond scattering for ~ > 0 would add a broad 
high frequency 11 tail" to the secondary peak. This correction would 
not qualitatively change our conclusions as depicted in Figure 5. 

-35-



37. Y.R. Shen, 11 Stimulated Raman Scattering" in Topics in Applied 
Physics #8; Light Scattering in Solids, Ed. J.A. DeSanto (Springer
Verlag, New York, 1975) p. 275. 

38. M. Sparks, Phys. Rev. Lett. 32, 450 (1974). This and other papers 
by Sparks, et al. are criticiSed on general grounds by D. Eimerl 
(Phys. Rev. Letters 40, 934 (1978)) and by P.L. Kelly (Phys. Rev. 
A20, 372 (1979)). A-microscopic model considered by D. Eimerl 
{Pnys. Rev. A20, 369 (1979)) does not treat the oscillatory modes 
as true phonons. 

,.36-



Figure 1 

Figure 2 

Figure 3 

Figure 4 

FIGURE CAPTIONS 

The phase diagram for the model Hami 1 toni an showing the 

temperature ranges where 1 oca 1 osci 11 a tors and extended 

phonons minimize the free energy as functions of the 

normalized phonon dispersion W/r. In practice, the 

transition between the two regions will be continuous and 

no phase transition is expected. 

Energy levels of the doubly excited model Hamiltonian 

with a semicircular density of states (the semicircular 

model) as functios of W/r. The bound states disappear 

for W/r greater than four. 

The normalized probabilities, R, of optically creating 

two-phonon bound states, for the semi circular mode 1 , as 

functions of W/r. The upper curve corresponds to neg a

t i ve r and the 1 ower curve corresponds to positive r. 

Note the logarithmic scale. 

The frequencies of the primary (photon ~ free phonon) and 

secondary (photon + phonon ~ two-phonon bound state) 

peaks in the absorption spectrum of the semicircular 

mode 1 as functions of W/r. The upper line describes the 

primary peak and the lower curve describes the secondary 

peak in both cases. Note that the frequency scale on the 

left corresponding to A < 0 differs from the scale on the 
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Figure 5 

right where tl > 0. The secondary peak disappears with 

the bound state for W = 4r. 

The trans it ion in the absorption spectrum, a(w), from 

that characterizing local oscillators (top) to that 

characterizing phonons (bottom) for the semicircular 

model. The series of spectra correspond to (from top to 

bottom) W/(4r) = 0, 1/3, 2/3, l. Note the different 

frequency scales for the spectra on the left (tl < 0) and 

those on the right (tl > 0). 

The secondary peak (if visible) lies at a lower 

frequency than the primary peak in each case. The arrow 

on the lower right spectrum indicates the position of the 

secondary peak as its intensity vanishes. Peaks in a (w) 

were given a Lorentzian shape and a half-width d = 0. l r 

for r < 0 and d = 0. 3 r for tl > 0. The phonon concen

tration C was taken to be 0. 03 for tl < 0 and 0. 3 for 

A > 0. The somewhat unreasonable parameters were chosen 

purely for the purpose of illustrating the spectral 

transition. 
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